Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4*S*,8*S*,9*R*,12*E*)-8,9,16,18-Tetrahydroxy-4-methyl-3-oxabicyclo[12.4.0]octadeca-12,14,16,18-tetraen-2-one monohydrate

Ling-Ling Zhao,^a Yue Gai,^a Hisayoshi Kobayashi,^b Chang-Qi Hu^a* and Hui-Ping Zhang^a*

^aDepartment of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China, and ^bInstitute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan Correspondence e-mail: hpzhang@shmu.edu.cn

Received 7 March 2008; accepted 14 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.061; wR factor = 0.146; data-to-parameter ratio = 8.7.

The asymmetric unit of the title compound, $C_{18}H_{24}O_6 \cdot H_2O$, contains a 14-membered macrolide molecule and a water molecule. In the crystal structure, intramolecular $C-H\cdots O$ and $O-H\cdots O$ hydrogen bonds help to stabilize the molecular conformation, while intermolecular $O-H\cdots O$ hydrogen bonds link the molecules, forming an infinite network. The absolute configuration was assigned by comparison with related zearalenone compounds, but needs verification.

Related literature

For the extraction of the components of *Fusarium* sp. 05ABR26 see: Zhao *et al.* (2008). For the crystal structure of zearalenol, see: Gelo-Pujić *et al.* (1994). For related zearalenone series compounds, see: Zinedine *et al.* (2007). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{18}H_{24}O_6 H_2O$ $M_r = 354.39$ Monoclinic, C2 a = 18.23 (1) Å b = 8.078 (6) Å c = 13.86 (1) Å $\beta = 118.441$ (7)° $V = 1795 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.15 \times 0.05 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.980, T_{max} = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.145$ S = 1.032076 reflections 239 parameters 4 restraints 4458 measured reflections 2076 independent reflections 1804 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.28~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.36~e~{\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1…O3	0.82	1.85	2.560 (4)	144
$O2-H2\cdots O7$	0.82	1.79	2.608 (4)	172
C3-H3···O7	0.93	2.77	3.398 (4)	125
C9−H9 <i>B</i> ···O3	0.96	2.73	3.198 (5)	111
$O1-H1\cdots O3^{i}$	0.82	2.46	3.003 (4)	125
$O7 - H7Y \cdots O2^{ii}$	0.844 (18)	2.01 (3)	2.798 (4)	156 (6)
$O5-H5\cdots O6^{iii}$	0.82	2.02	2.821 (4)	166
$O6-H6\cdots O1^{iv}$	0.82	2.13	2.871 (4)	149
$C3 - H3 \cdot \cdot \cdot O6^{v}$	0.93	2.88	3.398 (4)	116
$C10-H10B\cdots O2^{v}$	0.97	2.52	3.346 (6)	144
$O7-H7X\cdots O5^{vi}$	0.857 (18)	1.818 (19)	2.674 (4)	176 (4)

Symmetry codes: (i) -x + 2, y, -z + 1; (ii) -x + 1, y, -z; (iii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, -z + 2; (iv) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, -z + 1; (v) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, -z + 1; (vi) x, y, z - 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This study was supported by the National Natural Science Foundation of China (grant No. 30371680). We thank Professor Min-Qin Chen of the Research Centre of Analysis and Measurement of Fudan University for work on the X-ray crystal structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2058).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2000). *SMART* and *SAINT*. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). *Tetrahedron*, **50**, 13753–13764.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, L. L., Gai, Y., Kobayashi, H., Hu, C. Q. & Zhang, H. P. (2008). Chin. Chem. Lett. Submitted.
- Zinedine, A., Sriano, J. M., Moltö, J. C. & Mañes, J. (2007). Food Chem. Toxicol. 45, 1–18.

Acta Cryst. (2008). E64, o999 [doi:10.1107/S1600536808010258]

(4*S*,8*S*,9*R*,12*E*)-8,9,16,18-Tetrahydroxy-4-methyl-3-oxabicyclo[12.4.0]octadeca-12,14,16,18-tetraen-2-one monohydrate

L.-L. Zhao, Y. Gai, H. Kobayashi, C.-Q. Hu and H.-P. Zhang

Comment

The title compound, (I), 5'-hydroxyzearalenol is a new natural β -resorcylic macrolide which has recently been isolated (Zhao *et al.*, 2008) from the culture of a marine-derived fungus *Fusarium sp.* 05ABR26. It is closely related in structure to the zearalenone series compounds (Zinedine *et al.*, 2007), which show attractive cytotoxic and genotoxic effects. As a continuation of our studies on the secondary metabolites of *Fusarium sp.* 05ABR26, we report here the crystal structure of 5'-hydroxyzearalenol monohydrate.

In the asymmetric unit of (I) one molecule of 5'-hydroxyzearalenol and one solvent water molecule are observed. The β -resorcylic unit (C1—C7) is essentially planar, with a r.m.s. deviation of the respective atoms of 0.010 (4) Å. The 14-membered macrolide (C1/C6—C8/C10—C18/O4) adopts a twist conformation which is additionally stabilized by weak intramolecular C—H…O and O—H…O hydrogen bond (Table 1). Otherwise, all bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

The structure of (I) is built up from the self-assembly of the molecules of 5'-hydroxyzearalenol with water molecules *via* hydrogen-bond interactions. The water molecule is involved as a donor and accepter of hydrogen bonds. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Fig. 2 and Table 1).

It was not possible to accurately determine the absolute configuration of (I) by anomalous dispersion effects in the case of using Mo K/a radiation (0.71073 Å). However, the naturally occurring compounds of the zearalenone series all had the same C3S configuration (Zinedine *et al.*, 2007), thereofore leading to the assignment of the absolute configurations of C7 and C8 to be S and R, respectively. Nevertheless, this absolute configuration of the molecule needs further verifcatio.

Experimental

5'-hydroxyzearalenol was isolated from 1*L* culture of a marine-derived fungus 05ABR26 (a *Fusarium sp.*), affording 9.1 mg by repeated column chromatography on Sephadex LH-20 and Silica gel. Single crystals suitable for X-ray analysis were grown by slow evaporation of a solution of 5'- hydroxyzearalenol in n-hexane:acetone (3:1 v/v) at room temperature.

Refinement

The H atoms of the water molecule were located in a different Fourier map. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H distance of 0.82 Å and C—H distances in the range 0.93–0.98 Å. The $U_{iso}(H)$ values were constrained to be $1.5U_{eq}(\text{carrier atom})$ for hydroxy and methyl H atoms and $1.2U_{eq}(\text{carrier atom})$ for the remaining H atoms.

Figures

Fig. 1. A view of the asymmetric unit of 5'-hydroxyzearalenol monohydrate showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.

Fig. 2. The molecular packing diagram of 5'-hydroxyzearalenol monohydrate viewed down the b axis. Hydrogen bonds are shown as dashed lines.

(4S, 8S, 9R, 12E) - 8, 9, 16, 18 - Tetrahydroxy - 4 - methyl - 3 - oxabicyclo [12.4.0] octade ca - 12, 14, 16, 18 - tetraen - 2 - one monohydrate

Crystal data	
$C_{18}H_{24}O_6 \cdot H_2O$	F(000) = 760
$M_r = 354.39$	$D_{\rm x} = 1.312 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 687 reflections
a = 18.23 (1) Å	$\theta = 2.3 - 26.4^{\circ}$
b = 8.078 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 13.86(1) Å	T = 293 K
$\beta = 118.441 \ (7)^{\circ}$	Prismatic, colorless
$V = 1795 (2) \text{ Å}^3$	$0.20\times0.15\times0.05~mm$
Z = 4	

Data collection

2076 independent reflections
1804 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.081$
$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$h = -23 \rightarrow 22$
$k = -10 \rightarrow 4$
$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.145$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0914P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2076 reflections	$(\Delta/\sigma)_{max} < 0.001$
239 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.87040 (13)	0.9829 (4)	0.35095 (16)	0.0406 (6)
H1	0.9091	0.9490	0.4085	0.061*
O2	0.57709 (13)	1.0102 (4)	0.17058 (17)	0.0424 (6)
H2	0.5857	1.0188	0.1179	0.064*
O3	0.94597 (14)	0.9208 (5)	0.55690 (19)	0.0555 (9)
O4	0.88077 (12)	0.9851 (4)	0.65316 (15)	0.0393 (6)
O5	0.72723 (16)	1.0005 (5)	0.9735 (2)	0.0633 (10)
Н5	0.7609	0.9364	1.0189	0.095*
O6	0.66693 (14)	1.3026 (3)	0.84561 (17)	0.0397 (6)
Н6	0.6404	1.3623	0.7923	0.060*
C1	0.79948 (18)	0.9669 (4)	0.4619 (2)	0.0303 (7)
C2	0.79927 (18)	0.9842 (4)	0.3594 (2)	0.0323 (6)
C3	0.72615 (18)	1.0056 (4)	0.2630 (2)	0.0325 (7)
H3	0.7275	1.0229	0.1975	0.039*
C4	0.65057 (18)	1.0013 (4)	0.2639 (2)	0.0329 (7)
C5	0.64859 (18)	0.9820 (5)	0.3630 (2)	0.0339 (7)
H5A	0.5974	0.9807	0.3626	0.041*
C6	0.72118 (18)	0.9649 (4)	0.4615 (2)	0.0307 (6)
C7	0.88176 (18)	0.9540 (5)	0.5598 (2)	0.0348 (8)
C8	0.95973 (17)	0.9717 (5)	0.7566 (2)	0.0371 (8)
H8	0.9929	0.8813	0.7501	0.044*
C9	1.0079 (2)	1.1292 (6)	0.7784 (3)	0.0518 (10)
Н9А	0.9748	1.2192	0.7817	0.078*

H9B	1.0214	1.1488	0.7204	0.078*
H9C	1.0583	1.1207	0.8470	0.078*
C10	0.9324 (2)	0.9239 (5)	0.8403 (3)	0.0403 (8)
H10A	0.9817	0.9075	0.9107	0.048*
H10B	0.9031	0.8190	0.8186	0.048*
C11	0.8761 (2)	1.0503 (5)	0.8547 (3)	0.0390 (8)
H11A	0.8391	1.0999	0.7843	0.047*
H11B	0.9100	1.1376	0.9037	0.047*
C12	0.8244 (2)	0.9678 (5)	0.9017 (3)	0.0384 (8)
H12A	0.7921	0.8786	0.8531	0.046*
H12B	0.8621	0.9189	0.9721	0.046*
C13	0.76515 (19)	1.0832 (5)	0.9174 (2)	0.0372 (8)
H13	0.7985	1.1746	0.9643	0.045*
C14	0.69633 (19)	1.1591 (4)	0.8122 (2)	0.0319 (7)
H14	0.7218	1.1976	0.7680	0.038*
C15	0.6218 (2)	1.0502 (5)	0.7392 (3)	0.0402 (8)
H15A	0.6040	0.9934	0.7861	0.048*
H15B	0.5766	1.1225	0.6914	0.048*
C16	0.6333 (2)	0.9202 (5)	0.6675 (3)	0.0394 (8)
H16A	0.6779	0.8464	0.7150	0.047*
H16B	0.5826	0.8549	0.6320	0.047*
C17	0.65289 (19)	0.9846 (5)	0.5803 (2)	0.0365 (7)
H17	0.6211	1.0723	0.5372	0.044*
C18	0.71206 (18)	0.9253 (4)	0.5608 (2)	0.0320 (7)
H18	0.7509	0.8537	0.6124	0.038*
07	0.58905 (17)	1.0465 (9)	-0.0084 (2)	0.104 (2)
H7X	0.6347 (15)	1.031 (7)	-0.011 (3)	0.065 (14)*
H7Y	0.5433 (15)	1.057 (9)	-0.067 (3)	0.084 (17)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0283 (10)	0.0658 (18)	0.0285 (10)	0.0009 (12)	0.0143 (9)	-0.0025 (13)
O2	0.0303 (10)	0.0656 (19)	0.0266 (10)	0.0022 (12)	0.0099 (9)	0.0024 (12)
O3	0.0308 (11)	0.105 (3)	0.0311 (11)	0.0088 (14)	0.0150 (10)	-0.0045 (14)
O4	0.0271 (9)	0.0652 (16)	0.0222 (10)	0.0050 (12)	0.0088 (8)	-0.0037 (12)
O5	0.0505 (15)	0.096 (3)	0.0577 (16)	0.0275 (17)	0.0372 (14)	0.0453 (18)
O6	0.0403 (13)	0.0473 (14)	0.0316 (11)	0.0104 (11)	0.0172 (11)	0.0001 (11)
C1	0.0296 (13)	0.0349 (18)	0.0239 (12)	0.0002 (13)	0.0108 (11)	-0.0028 (13)
C2	0.0337 (14)	0.0363 (17)	0.0280 (13)	-0.0036 (15)	0.0156 (12)	-0.0052 (15)
C3	0.0355 (15)	0.0392 (18)	0.0258 (12)	0.0005 (14)	0.0170 (12)	-0.0004 (13)
C4	0.0308 (14)	0.0371 (18)	0.0265 (13)	0.0024 (14)	0.0102 (12)	-0.0022 (13)
C5	0.0271 (13)	0.0457 (18)	0.0303 (14)	0.0007 (14)	0.0147 (12)	-0.0017 (15)
C6	0.0328 (14)	0.0345 (17)	0.0261 (13)	0.0015 (13)	0.0150 (12)	-0.0022 (12)
C7	0.0297 (14)	0.048 (2)	0.0275 (14)	0.0016 (14)	0.0139 (12)	-0.0025 (14)
C8	0.0240 (13)	0.057 (2)	0.0248 (13)	0.0109 (15)	0.0072 (12)	0.0000 (15)
C9	0.0408 (19)	0.071 (3)	0.047 (2)	-0.0069 (19)	0.0238 (18)	-0.013 (2)
C10	0.0356 (16)	0.053 (2)	0.0302 (15)	0.0129 (16)	0.0139 (13)	0.0081 (15)

C11	0.0377 (16)	0.045 (2)	0.0397 (16)	0.0036 (15)	0.0230 (15)	0.0020 (15)
C12	0.0326 (14)	0.045 (2)	0.0354 (15)	0.0080 (15)	0.0141 (13)	0.0100 (15)
C13	0.0317 (15)	0.054 (2)	0.0304 (15)	0.0018 (15)	0.0182 (14)	0.0059 (14)
C14	0.0310 (14)	0.0415 (18)	0.0287 (14)	0.0015 (13)	0.0187 (13)	0.0002 (13)
C15	0.0379 (16)	0.053 (2)	0.0370 (16)	-0.0036 (16)	0.0234 (15)	-0.0040 (16)
C16	0.0408 (17)	0.0452 (19)	0.0349 (16)	-0.0130 (16)	0.0202 (15)	-0.0087 (15)
C17	0.0375 (15)	0.0431 (18)	0.0295 (14)	-0.0029 (15)	0.0165 (13)	-0.0035 (15)
C18	0.0291 (14)	0.0382 (17)	0.0247 (14)	-0.0044 (13)	0.0096 (12)	-0.0011 (12)
07	0.0298 (13)	0.252 (6)	0.0303 (13)	0.005 (3)	0.0133 (12)	0.005 (3)
<i>c</i> .						
Geometric paran	neters (A, °)					
O1—C2		1.356 (4)	С9—Н	9C	0.959	9
O1—H1		0.8200	C10—0	211	1.526	(5)
O2—C4		1.349 (4)	C10—1	H10A	0.970	0
O2—H2		0.8200	C10—1	H10B	0.970	0
O3—C7		1.220 (4)	C11—0	212	1.532	(5)
O4—C7		1.327 (4)	C11—I	H11A	0.970	0
O4—C8		1.474 (3)	C11—I	H11B	0.970	0
O5—C13		1.429 (4)	C12—0	213	1.518	(5)
O5—H5		0.8200	C12—1	H12A	0.970	0
O6—C14		1.443 (4)	C12—1	H12B	0.970	0
O6—H6		0.8200	C13—0	C14	1.527	(4)
C1—C6		1.424 (4)	C13—1	H13	0.980	0
C1—C2		1.426 (4)	C14—0	C15	1.528	(5)
C1—C7		1.470 (4)	C14—]	H14	0.980	0
C2—C3		1.377 (4)	C15—0	216	1.526	(5)
C3—C4		1.384 (4)	C15—1	H15A	0.970	0
С3—Н3		0.9300	C15—1	H15B	0.970	0
C4—C5		1.400 (4)	C16—0	217	1.507	(4)
C5—C6		1.383 (4)	C16—1	H16A	0.970	0
C5—H5A		0.9300	C16—1	H16B	0.970	0
C6—C18		1.497 (4)	C17—0	218	1.321	(5)
С8—С9		1.492 (6)	C17—1	H17	0.930	0
C8—C10		1.514 (5)	C18—1	H18	0.930	0
С8—Н8		0.9800	07—Н	7X	0.857	(18)
С9—Н9А		0.9599	07—Н	7Y	0.844	(18)
С9—Н9В		0.9599				
C2—O1—H1		109.5	C10—0	C11—C12	110.7	(3)
C4—O2—H2		109.5	C10—0	C11—H11A	109.5	
С7—О4—С8		118.3 (2)	C12—0	C11—H11A	109.5	
С13—О5—Н5		109.5	C10—0	C11—H11B	109.5	
С14—О6—Н6		109.5	C12—0	С11—Н11В	109.5	
C6—C1—C2		118.0 (3)	H11A-	C11H11B	108.1	
C6—C1—C7		125.7 (3)	C13—0	C12—C11	114.7	(3)
C2—C1—C7		116.3 (3)	C13—0	C12—H12A	108.6	
O1—C2—C3		116.2 (2)	C11—0	С12—Н12А	108.6	
O1—C2—C1		122.4 (3)	C13—0	С12—Н12В	108.6	
C3—C2—C1		121.4 (3)	C11—0	С12—Н12В	108.6	

C2—C3—C4	119.8 (3)	H12A—C12—H12B	107.6
С2—С3—Н3	120.1	O5-C13-C12	110.6 (3)
С4—С3—Н3	120.1	O5-C13-C14	108.5 (2)
O2—C4—C3	121.9 (3)	C12—C13—C14	115.3 (3)
O2—C4—C5	117.9 (3)	O5-C13-H13	107.4
C3—C4—C5	120.1 (3)	C12—C13—H13	107.4
C6—C5—C4	121.3 (3)	C14—C13—H13	107.4
С6—С5—Н5А	119.3	O6—C14—C13	106.2 (2)
C4—C5—H5A	119.3	O6—C14—C15	109.1 (3)
C5—C6—C1	119.3 (3)	C13—C14—C15	117.9 (3)
C5—C6—C18	117.1 (3)	O6-C14-H14	107.8
C1—C6—C18	123.2 (3)	C13—C14—H14	107.8
O3—C7—O4	122.2 (3)	C15-C14-H14	107.8
O3—C7—C1	124.0 (3)	C16—C15—C14	118.3 (3)
O4—C7—C1	113.9 (2)	C16—C15—H15A	107.7
O4—C8—C9	110.0 (3)	C14—C15—H15A	107.7
O4—C8—C10	103.8 (2)	C16—C15—H15B	107.7
C9—C8—C10	116.0 (3)	C14—C15—H15B	107.7
O4—C8—H8	108.9	H15A—C15—H15B	107.1
С9—С8—Н8	108.9	C17—C16—C15	116.3 (3)
С10—С8—Н8	108.9	C17—C16—H16A	108.2
С8—С9—Н9А	109.5	C15—C16—H16A	108.2
С8—С9—Н9В	109.5	C17—C16—H16B	108.2
Н9А—С9—Н9В	109.5	C15-C16-H16B	108.2
С8—С9—Н9С	109.5	H16A—C16—H16B	107.4
Н9А—С9—Н9С	109.5	C18—C17—C16	124.6 (3)
Н9В—С9—Н9С	109.5	С18—С17—Н17	117.7
C8—C10—C11	114.6 (3)	С16—С17—Н17	117.7
C8—C10—H10A	108.6	C17—C18—C6	124.7 (3)
C11—C10—H10A	108.6	C17—C18—H18	117.6
C8—C10—H10B	108.6	C6—C18—H18	117.6
C11-C10-H10B	108.6	H7X—O7—H7Y	121 (3)
H10A—C10—H10B	107.6		
C6—C1—C2—O1	-178.2 (3)	C2—C1—C7—O4	161.9 (3)
C7—C1—C2—O1	2.4 (5)	C7—O4—C8—C9	84.2 (4)
C6—C1—C2—C3	2.7 (5)	C7—O4—C8—C10	-151.0 (3)
C7—C1—C2—C3	-176.7 (3)	O4—C8—C10—C11	-61.1 (4)
O1—C2—C3—C4	177.3 (3)	C9—C8—C10—C11	59.7 (4)
C1—C2—C3—C4	-3.6 (5)	C8-C10-C11-C12	157.2 (3)
C2—C3—C4—O2	-175.3 (3)	C10-C11-C12-C13	-179.1 (3)
C2—C3—C4—C5	2.6 (5)	C11—C12—C13—O5	-173.0 (3)
O2—C4—C5—C6	177.2 (3)	C11—C12—C13—C14	63.5 (4)
C3—C4—C5—C6	-0.8 (6)	O5-C13-C14-O6	74.9 (4)
C4—C5—C6—C1	-0.1 (6)	C12-C13-C14-O6	-160.5 (3)
C4—C5—C6—C18	-173.1 (3)	O5-C13-C14-C15	-47.6 (4)
C2-C1-C6-C5	-0.9 (5)	C12—C13—C14—C15	77.0 (4)
C7—C1—C6—C5	178.5 (3)	O6—C14—C15—C16	162.4 (3)
C2-C1-C6-C18	171.7 (3)	C13-C14-C15-C16	-76.5 (4)
C7—C1—C6—C18	-8.9 (5)	C14—C15—C16—C17	-63.5 (4)

C8—O4—C7—O3	-2.6 (6)	C15-C16-C17-C18	133.7 (4)
C8—O4—C7—C1	178.6 (3)	C16—C17—C18—C6	167.4 (3)
C6—C1—C7—O3	163.7 (4)	C5-C6-C18-C17	-37.0 (5)
C2—C1—C7—O3	-16.9 (5)	C1C6C18C17	150.3 (4)
C6—C1—C7—O4	-17.5 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O1—H1…O3	0.82	1.85	2.560 (4)	144.	
O2—H2…O7	0.82	1.79	2.608 (4)	172.	
С3—Н3…О7	0.93	2.77	3.398 (4)	125.	
С9—Н9В…О3	0.96	2.73	3.198 (5)	111.	
O1—H1···O3 ⁱ	0.82	2.46	3.003 (4)	125.	
O7—H7Y···O2 ⁱⁱ	0.84 (2)	2.01 (3)	2.798 (4)	156 (6)	
O5—H5···O6 ⁱⁱⁱ	0.82	2.02	2.821 (4)	166.	
O6—H6…O1 ^{iv}	0.82	2.13	2.871 (4)	149.	
С3—Н3…Об ^v	0.93	2.88	3.398 (4)	116.	
C10— $H10B$ ···O2 ^v	0.97	2.52	3.346 (6)	144.	
O7—H7X···O5 ^{vi}	0.86 (2)	1.82 (2)	2.674 (4)	176 (4)	
Symmetry codes: (i) - <i>x</i> +2, <i>y</i> , - <i>z</i> +1; (ii) - <i>x</i> +1, <i>y</i> , - <i>z</i> ; (iii) - <i>x</i> +3/2, <i>y</i> -1/2, - <i>z</i> +2; (iv) - <i>x</i> +3/2, <i>y</i> +1/2, - <i>z</i> +1; (v) - <i>x</i> +3/2, <i>y</i> -1/2, - <i>z</i> +1; (vi) <i>x</i> , <i>y</i> , <i>z</i> -1.					

